sábado, 22 de abril de 2017

DIAGRAMAS DE MOLLER

DIAGRAMA DE MOLLER





DIAGRAMA DE MOELLER

    La configuración electrónica de los elementos se rige según el diagrama de Moeller, que nos sirve para conocer la distribución de los elementos en los orbitales de la corteza del átomo. 

 En el átomo existen también subniveles:

§  El nivel 1 está formado por un único subnivel llamado 1s.
§  El nivel 2 está formado por 2 subniveles: 2s y 2p.
§  El nivel 3 por 3 subniveles: 3s3p y 3d.
§  El nivel 4 está formado por 4 subniveles: 4s4p4d y 4f.
§  El nivel 5 tendría 5 subniveles: 5s5p5d5f y 5g (el resto de los nombres, a partir del f siguen el orden alfabético: gh,… ), etc.

lunes, 17 de abril de 2017

NUMERO CUANTICOS:

NUMEROS CUANTICOS

Número cuántico secundario ()
También es conocido como el número cuántico del momento angular orbital o número cuántico azimutal y se simboliza como ℓ (L minúscula).
Describe la forma geométrica del orbital. Los valores de l  dependen del número cuántico principal. Puede tomar los valores desde  = 0 hasta  =n-1. En el caso  de los átomos con más de un electrón, determina también el subnivel de energía en el que se encuentra un orbital, dentro de un cierto nivel energético. El valor de l se designa segun las letras:
 
 

Para efectos de comprensión, la comunidad científica ha aceptado que los números que representan los subniveles (0, 1, 2, y 3) sean reemplazados por las letras s, p, d y f, respectivamente, para representar los distintos tipos de orbitales.
Estas letras se obtiene de la inicial de las palabras sharp (s), principal (p), difuso (d) y fundamental (f) .
 

 

viernes, 14 de abril de 2017

TABLA PERIODICA COMPLETA


LOS NUMEROS CUANTICOS

LOS NUMEROS CUANTICOS


LA CONFIGURACION ELECTRONICA

CONFIGURACION ELECTRONICA



                                                                    
Como se dijo con anterioridad, la actual tabla periódica está ordenada según la configuración electrónica, pero, ¿qué es la configuración electrónica? La configuración electrónica (o C.E) indica la posición de cada electrón dentro de la envoltura nuclear, indicando en el nivel energético en el que éste se encuentra y en que orbital. Cada electrón puede ser identificado específicamente gracias a sus cuatro números cuánticos, los cuales son:
  1. Número Cuántico principal (n): Corresponde al nivel energético en donde se encuentra el electrón. Va desde 1 hacia arriba (1, 2, 3...)
  2. Número Cuántico secundario o azimutal (l): Corresponde al orbital en donde se encuentra el electrón. Se representa por s (0), p (1), d (2) y f (3).
  3. Número Cuántico Magnético (m): Indica la orientación del orbital donde se encuentra el electrón. Va desde -l hasta l (incluyendo el 0).
  4. Número Cuántico de Spin o Giro (s): Este número cuántico se define tradicionalmente como el giro que posee el electrón. Dos electrones con el mismo giro no pueden tener un mismo m (solo se permiten dos electrones por m y deben tener spines (giros) opuestos). Se identifican tradicionalmente como -1/2 y +1/2 o -1 y +1, en esta página web se utilizará la primera identificación (-1/2 y +1/2). Ahora para poder seguir avanzando en la configuración electrónica debemos conocer primero unos ciertos principios que nos ayudarán a comprender mejor como se desarrolla este tema. Dichos principios son:
Principio de Aufbau o de la menor energía: Este principio nos indica que todos los electrones partirán "llenando" los orbitales de menor energía posible. Si el de menor energía está lleno, seguirán con el que le sigue en energía y así sucesivamente ·  Principio de Hund o de la máxima multiplicidad: Este principio nos dice que en caso de que existan orbitales atómicos con la misma energía, los electrones se distribuirán equitativamente en cada uno y cuando todos tengan un electrón se empezaran a llenar con los que les falten. Por ejemplo, si se tiene tres orbitales con la misma energía (denominados orbitales degenerados), los electrones entrarán de tal manera que los primeros tres electrones entrarán uno en cada orbital, todos con el mismo spin. Cuando esto ocurre se dice que el orbital (los orbitales en este caso) se encuentra semi-lleno. Posteriormente, se completaran los orbitales con los electrones que hagan falta para este efecto. Esto se comprenderá de mejor manera más adelante, cuando se hagan algunos ejemplos.
·  Principio de exclusión de Pauli: Este principio nos dice que cada electrón posee una combinación única de 4 números cuánticos que lo personaliza. No es posible que existan dos electrones con los 4 números cuánticos iguales. Esto quiere decir, que solamente pueden existir dos electrones por orbital, ya que existen dos espines (+1/2 y -1/2).

MEDIDIDAS DEL SI



QUÍMICA 
PRIMER PARCIAL
1.  Magnitudes Fisicas.
Magnitud: Es toda propiedad de los cuerpos que se puede medir. Por ejemplo: temperatura, velocidad, masa, peso, etc.
Medir: Es comparar la magnitud con otra similar, llamada unidad, para averiguar cuántas veces la contiene.
Unidad: Es una cantidad que se adopta como patrón para comparar con ella cantidades de la misma especie. Ejemplo: Cuando decimos que un objeto mide dos metros, estamos indicando que es dos veces mayor que la unidad tomada como patrón, en este caso el metro.
2.  Siatema Internacional de Medida
Para resolver el problema que suponía la utilización de unidades diferentes en distintos lugares del mundo, en la XI Conferencia General de Pesos y Medidas (París, 1960) se estableció el Sistema Internacional de Unidades (SI). Para ello, se actuó de la siguiente forma:
  • En primer lugar, se eligieron las magnitudes fundamentales y la unidad correspondiente a cada magnitud fundamental. Una magnitud fundamental es aquella que se define por sí misma y es independiente de las demás (masa, tiempo, longitud, etc.).
  • En segundo lugar, se definieron las magnitudes derivadas y la unidad correspondiente a cada magnitud derivada. Una magnitud derivada es aquella que se obtiene mediante expresiones matemáticas a partir de las magnitudes fundamentales (densidad, superficie, velocidad).
En el cuadro siguiente puedes ver las magnitudes fundamentales del SI, la unidad de cada una de ellas y la abreviatura que se emplea para representarla:
Magnitud fundamentalUnidadAbreviatura
m
kg
s
K
A
cd
mol


Múltiplos y submúltiplos de las unidades del SI
Prefijo
Símbolo
Potencia
Prefijo
Símbolo
Potencia
giga
G
109
deci
d
10-1
mega
M
106
centi
c
10-2
kilo
k
103
mili
m
10-3
hecto
h
102
micro
µ
10-6
deca
da
101
nano
n
10-9